
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 21. October 2019

Markus Püschel, David Steurer

Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 5 HS 19

Exercise Class (Room & TA):

Submi�ed by:

Peer Feedback by:

Points:

Submission: On Monday, 28 October 2019, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by

∗
are challenge exercises. �ey do not count towards bonus points.

Exercise 5.1 Loop invariant (1 Point).

Consider the pseudocode of the bubble sort algorithm on an integer array a[0, . . . , n− 1], n ≥ 1.

procedure BubbleSort(a)
for 0 ≤ i < n do

for 0 ≤ j < n− i− 1 do
if a[j] > a[j + 1] then

t← a[j]
a[j]← a[j + 1]
a[j + 1]← t

Bubble sort satis�es the loop invariant INV(m) for 0 ≤ m ≤ n: A�er m iterations of the outer for-loop,
the subarray a[n−m, . . . , n− 1] is sorted and each element from a[0, . . . n−m− 1] is not greater than
each element from a[n−m, . . . , n−1].Here we assume that a[n, . . . , n−1] is empty, so INV(0) trivially
holds.

Prove that:

a) If INV(m) holds, then INV(m + 1) holds (for all 0 ≤ m < n).

b) INV(n) implies the correct solution.

Exercise 5.2 Decision tree (1 Point).

In the lecture you saw a proof of the lower bound for the number of comparisons in sorting by ar-

guing that every sorting algorithm (based on comparisons) corresponds to a decision tree. Consider

the pseudocode of straight mergesort from the script:



procedure StraightMergesort(A[1, . . . , n])
length← 1
while length < n do

right← 0
while right + length < n do

le�← right + 1
middle← le� + length− 1
right← min(middle + length, n)
Merge(A, le�, middle, right)

length← 2 · length

Sketch the decision tree for n = 4, draw enough of it to determine the number of leaves and the height

(assume the root has height 0). How many comparisons are done in the worst case?

Hint: �e comparisons occur in the subroutine Merge.

Exercise 5.3 Inverse questions (1 Point).

In this exercise assume that Selection Sort does not swap elements with the same index.

a) Give a sequence of 6 numbers for which Selection Sort performs exactly 3 swaps of keys in order to

sort the sequence.

b) For all n > 1 give a sequence of n numbers for which Selection Sort performs exactly 1 swap of

keys in order to sort the sequence, but Bubble Sort and Insertion Sort perform at least Ω(n) swaps
of keys.

c) For all n > 1 give a sequence of n numbers for which Bubble Sort, Selection Sort and Insertion Sort

perform Θ(n) swaps of keys in order to sort the sequence.

d) For all n > 1 give a sequence of n numbers for which Bubble Sort performs Θ(n1.9) swaps of keys
in order to sort the sequence.

Exercise 5.4 iPhone Drop Test.

You just got a new job at Apple in the department of destructive testing. �e �rst task given is to test

the endurance of the new iPhone 11 series. Speci�cally you need to determine the highest �oor that

the new iPhone can withstand when dropped out of the window.

When the phone is dropped and does not break, it is undamaged and can be dropped again. For sim-

plicity assume that subsequent drops of the phone do not a�ect its endurance (i.e. if it survives it will

have the identical state as if it weren’t dropped at all). However, once the iPhone has been broken, you

can no longer use it for another test.

If the phone breaks when dropped from �oor n, then it would also have broken from any �oor above

that. If the phone survives a fall, then it will survive any fall below that. Moreover, the phone always

survives the fall from ground �oor (n = 0), so you don’t have to drop it from the ground �oor.

As this is your �rst responsibility at your new job, you want to impress your new boss, and deliver

results as soon as possible. To achieve that, you devise a strategy to minimize the number of drop tests

required to �nd the solution.

a) What strategy would you use if only one phone is given and you perform the drop test on a building

with n �oors? What are the maximum number of drop tests that you have to perform?

2



b) What if we are given unlimited amount of identical phones and a building with n = 2k �oors, where
k ∈ N?

c) Assume that you are given exactly 2 identical phones and a building with n �oors. Devise a search

strategy for the �oor where the phone breaks that requires at mostO(
√
n) drops. Prove the runtime

bound.

Hint: Consider the inverse problem: Assume you want to spend at most
√
n rounds with the �rst phone

(�rst phase), and a�erwards at most
√
n rounds with the second phone (second phase). When the �rst

phone breaks, then you are le� with the problem of determining the correct �oor among the remaining
possibilities with only one more phone. Note that you have already analysed this problem in part (a).
Now keep in mind that your �rst phone might break with your �rst try. How does this limit your choice
for the very �rst step with the �rst phone? What about subsequent steps? Can you cover all n �oors
with this strategy?

d)
∗
Assume that you are given exactly t identical phones and a building with n �oors (where t is some

constant that doesn’t depend on n). Determine an e�cient search strategy for the �oor where the

phone breaks and give the number of drops in O-Notation.

3


